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Abstract

The POWERLIB SAS/IML software provides convenient power calculations for a wide
range of multivariate linear models with Gaussian errors. The software includes the Box,
Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the “univariate” approach to
repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and
Wilks Lambda tests in “multivariate” approach (MULTIREP), as well as a limited but
useful range of mixed models. The familiar univariate linear model with Gaussian errors
is an important special case. Power can be computed for all tests based on known or
estimated covariance. For estimated covariance, the software provides confidence limits
for the resulting estimated power. For UNIREP tests with known covariance, the software
can compute power in the context of an internal pilot design. Power for a UNIREP test
in the context of high dimension, low sample size data can be computed assuming known
or estimated covariance. All power and confidence limits values can be output to a SAS
dataset, which can be used to produce plots and tables for manuscripts.

Keywords: power, multivariate linear models, mixed models, Gaussian errors, SAS, internal
pilots, high dimension, low sample size.

1. Description of POWERLIB

POWERLIB is a suite of SAS/IML (SAS Institute 2013b) modules which computes statistical
power for hypothesis tests in a wide variety of univariate, multivariate, and repeated measures
linear models with Gaussian errors and fixed predictors. This paper describes version 2.2 of
POWERLIB. This version was developed using SAS version 9.3 (SAS Institute 2013a) and
can be run on both Windows and UNIX systems. The code includes matrix names longer
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than eight characters, a naming convention added in version 7; hence, the modules will not
run in SAS versions 6.12 or earlier.

1.1. Available models and hypothesis tests

POWERLIB computes power for the four tests commonly used for the “univariate” approach
to repeated measures: Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected. The four
tests and associated methods will be collectively referred to as the UNIREP approach.

The program also computes power for the three most popular multivariate test statistics:
Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda. In this manual, these
three tests and related methods are collectively referred to as the MULTIREP approach.

Power for both UNIREP and MULTIREP tests can be computed assuming known or esti-
mated covariance. Power for UNIREP tests with known covariance can be computed within
the context of an interal pilot study. Power for UNIREP tests with either known or estimated
covariance can be computed for high dimension, low sample size (HDLSS) data via a new
modified version of the Huynh-Felt test (CHI MULLER REF).

The UNIREP approach is equivalent to a restricted class of linear mixed models with Gaussian
errors that meet the following restrictions (Gurka, Coffey, and Muller 2007):

1. no missing or mistimed observations (all subjects have the same number of observations
at the same within-subject levels),

2. factorial within-subject design,

3. common between-subject design for all responses,

4. homogeneity of covariance parameters for all subjects, and

5. compound symmetric covariance structure.

The increasing popularity of using mixed models for data analysis naturally motivates the
need for reliable power analysis based on mixed models. Unfortunately, as Verbeke and
Molenbergs (2000) noted, very little is known about non-null distributions in mixed models.
Consequently, there is no known software that dependably calculates power for general mixed
models. Use of the methods proposed by Gurka et al. (2007) within POWERLIB allows for
power analysis for a restricted class of linear mixed models. Though the required restrictions
are not often met in practice, a power analysis based on this restricted class of mixed models
may provide reasonable guidelines for sample size, even in general scenarios (e.g, missing
data). Therefore, POWERLIB is a valuable tool for researchers who need to plan studies in
which mixed models will be fit to the collected data.

The familiar univariate linear model with Gaussian errors is a special case of the multivariate
and mixed model formulation. The program’s output and syntax simplifies for univariate
model power.

1.2. Model and hypothesis notation

Power computations in POWERLIB are derived within the framework of the general linear
multivariate model (GLMM). Muller and Stewart (2006) and Timm (2002) provided detailed
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discussion of basic theory and practice for all models treated by POWERLIB, with the former
focusing more on theory and the latter more on practice. For N independent sampling units,
p responses, and q predictors, the GLMM may be stated as:

Y = XB + E ,

with Y (N × p) containing information on random responses such as repeated measures, X
(N×q) a fixed design matrix containing predictors, B (q×p) containing unknown parameters,
and E (N × p) containing random errors. Rows of Y , X, and E correspond to independent
sampling units (such as subjects), columns of Y , B, and E to levels of the multivariate
response (often time), and columns of X and rows of B to predictors. With r = rank(X),
the methods used in this program assume N > r, rowi (E) ∼ Np (0,Σ), i ∈ {1, 2, . . . , N}, all
rows independent, and no missing data in Y or X.

In the context of data analysis, values in B and Σ are estimated. In the context of power
analysis, B and Σ are assumed to be known constants; however, in practice, estimates of B
and Σ from a previous study are often used. The software can compute point estimates and
confidence limits for power in order to reflect the uncertainty in the estimation of Σ and, in
some cases, also in B.

The corresponding general linear hypothesis (GLH) involves Θ = CBU , with C an a × q
matrix of known constants defining“between-subject”contrasts, and U a p×b matrix of known
constants defining “within-subject” contrasts. The power program requires rank(C) = a ≤ q
and rank(U) = b ≤ p. The GLH is

H0 : Θ = Θ0

H1 : Θ 6= Θ0 .

Most often Θ0 = 0.

1.3. Statistical theory

Detailed knowledge of the statistical theory behind power computations in multivariate linear
models is not required to use this software; however, for more sophisticated users, POWER-
LIB provides options for choosing distributional approximations. Defaults have been chosen
to reflect methods the authors believe to be the best available and should not be altered
without explicit rationale. Muller, Lavange, Ramey, and Ramey (1992) gave a review of the
theory behind the power methods implemented. Muller and Benignus (1992) provided a brief
introduction to the most basic ideas of power in the context of toxicology, while O’Brien and
Muller (1993) provided a lengthy tutorial in linear models power. Additionally, sections 2.9
- 2.12 give several references for various distributional approximations for UNIREP and MUL-
TIREP tests, their confidence limits, application to internal pilot studies, and use with high
dimension, low sample size data.

1.4. Why use this software?

Commercial software for computing power in linear models with Gaussian errors is available,
most notably NQuery (Statistical Solutions 2013), PASS (NCSS 2013), and PROC GLMPOWER

(SAS Institute 2013c). O’Brien (2003), Heitjan (2013), Hedeker, Gibbons, and Waternaux
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(1999) and Spybrook, Raudenbush, Liu, Congdon, and Martinez (2011) also provide addi-
tional useful free software. POWERLIB currently has the following advantages over these
and other products:

1. POWERLIB implements the power approximations described in Muller, Edwards, Simp-
son, and Taylor (2007), which has considerably better test size accuracy in some cases.

(a) PROC GLMPOWER from SAS does not compute power for multivariate Gaussian mod-
els, only univariate.

(b) PASS implements older multivariate power approximations from Muller and Bar-
ton (1989).

2. POWERLIB is easy to embed in other SAS/IML code for use in simulations.

3. POWERLIB is the only software with the following features:

(a) It computes point estimates for power based on estimated covariance.

(b) It computes confidence limits for power in Gaussian linear models.

(c) It computes power within the context of an internal pilot design.

(d) It computes power for high dimension, low sample size data.

2. How to use POWERLIB

2.1. Execution

The POWERLIB22.IML file included in the distribution contains several modules and is the
only file required to run POWERLIB. The POWER module performs all power calculations.
All other modules included in the POWERLIB22.IML file, except for some independent utility
modules discussed later in this paper, are called by the POWER module and are transparent to
the user.

With basic knowledge of SAS/IML, POWERLIB is simple to use via the general program
skeleton given in Table 1. The first two program statements are always required. They
initialize IML, ask for extra symbol space, and make the power modules available for use.
The RUN POWER statement executes the POWER module and is also required. Note that the
directory listed in the %INCLUDE statement is the directory where POWERLIB22.IML has been
copied; this, most likely, must be modified from the skeleton, found in Table 1.

The software can also be run from within another module by using a CALL statement. This
feature is particularly helpful when running simulations. Table 2 illustrates how to define a
user module that calls the power software.

2.2. Inputs overview

User inputs to the POWERLIB modules are made through 28 global matrices listed in Tables 3
and 4, grouped by application. Sections 2.4–2.13 discuss how to use these matrices in the order
the groups are presented in Tables 3 and 4. Because these matrices are global, use of these
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PROC IML SYMSIZE=2000;

%INCLUDE "..\IML\POWERLIB22.IML"/NOSOURCE2;

...programming statements to

assign global matrices that

describe model and choose options...

RUN POWER;

QUIT;

Table 1: Basic program skeleton.

START user_defined_module ( parm1, parm2, ... parmn)

GLOBAL (ESSENCEX, SIGMA, BETA, C, U, THETA0, REPN, BETASCAL, SIGSCAL,

RHOSCAL, ALPHA, ROUND, TOLERANCE, TOLERANC, UCDF, UMETHOD,

MMETHOD, IP_PLAN, N_IP, RANK_IP, LIMCASE, CLTYPE, N_EST,

RANK_EST, ALPHA_CL, ALPHA_CU, SIGTYPE DSNAME, OPT_ON,

OPT_OFF);

...your code here...

...programming statements to assign POWERLIB global matrices...

CALL POWER(_HOLDPOWER, _HOLDPOWERLBL, _POWERWARN, _POWERWARNLBL);

...some more of your code here...

FINISH user_defined_module;

Table 2: Calling POWERLIB from within a module.
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matrix names for reasons other than their intended purpose in POWERLIB will result in an
error. When calling POWERLIB from within a module, the 28 matrices, plus the matricies
TOLERANC and LIMCASE, must be listed as global matrices in the module definition, as it
appears in the START statement in Table 2. In previous versions of POWERLIB, the current
input matrix TOLERANCE was spelled as TOLERANC, and the current input matrix CLTYPE was
instead named LIMCASE. We retained TOLERANC and LIMCASE in the CALL statement so that
version 2.2 is compatible with programs written with previous versions of POWERLIB.

2.3. Outputs overview

POWERLIB produces four output matrices:

_HOLDPOWER _HOLDPOWERLBL _POWERWARN _POWERWARNLBL.

Unlike the input matrices listed in Tables 3 and 4, these are not globally defined. As such,
these four matrices must be listed if POWERLIB is executed with a CALL statement. As
stated before, use of these four matrix names for reasons other than their intended purpose
in POWERLIB may result in an error.

All power computations are saved to the matrix _HOLDPOWER with labels given in the vector
_HOLDPOWERLBL. Section 2.7 discusses options for power computations as well as elements to
include in _HOLDPOWER.

By default, _HOLDPOWER is sent to the output window. Section 2.7 shows how to save the
output matrix to a SAS dataset, which can be used, among other things, for graphing or
simulation purposes. By default, several model matrices and warnings are sent to the output
window prior to printing the output matrix. Section 2.7 discusses options that control matrix
printing and warning notification.

Information about any numerical difficulties and approximation accuracies is stored in the
global output matrix _POWERWARN with labels given in the vector _POWERWARNLBL. These
matrices are further documented in Section 2.14. Typical users will not need to inspect
_POWERWARN.

2.4. Required matrices

Computing power for a GLH with fixed predictors requires knowing seven variables: Σ, X,
B, C, U , α, and Θ0. The user must always specify Σ, X, B, and C via the matrices SIGMA,
ESSENCEX, BETA, and C, respectively. The power program assumes default values of U = Ip

(which corresponds to a MANOVA hypothesis with multivariate responses), Θ0 = 0, and
α = 0.05, specified with the matrices U, THETA0, and ALPHA, respectively.

Note that for univariate models, SIGMA is the variance, not the standard deviation, because
Σ = σ2 is 1 × 1. POWERLIB gains substantial advantages by treating the univariate case
as a special case of the multivariate because it requires the same variable name (SIGMA) for
both settings, creating a potential source of confusion.

Input checks

If a required input has not been given by the user, or if any input matrix does not conform
to the dimensions specified in Tables 3 and 4, POWERLIB will stop running. POWERLIB
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Matrix Name Description Size Default

Matrices to Specify the Model

ESSENCEX Fixed effects design matrix Varies Required
BETA Fixed effects matrix B q × p Required
C Matrix C in GLH a× q Required
U Matrix U in GLH p× b, b ≤ p Ip

SIGMA Covariance matrix p× p Required
SIGTYPE Scalar describing whether SIGMA is

known or estimated (=0 if known
and =1 if estimated)

1×1 0

THETA0 Matrix Θ0 a× b 0
ALPHA Type I error rates 1 row or col 0.05
REPN List specifying # of times to dupli-

cate each row of ESSENCEX
1 row or col 1

BETASCAL List of multipliers for BETA 1 row or col 1
RHOSCAL List of multipliers for correlation

matrix RHO, created from SIGMA

1 row or col 1

SIGSCAL List of multipliers for SIGMA 1 row or col 1

Matrices to Specify Confidence Limits

CLTYPE Type of confidence interval to in-
clude in power calculations

1× 1 −1

RANK_EST Scalar giving design matrix rank in
the analysis that yielded Σ and B
estimates

1× 1 None

N_EST # of observations in the analysis
that yielded Σ and/or B estimates

1× 1 None

ALPHA_CL Scalar specifying lower tail confi-
dence limit probability

1× 1 0.025

ALPHA_CU Scalar specifying upper tail confi-
dence limit probability

1× 1 0.025

Table 3: POWERLIB input matrices to specify the model and confidence limits.
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Matrix Name Description Size Default

Matrices to Compute Power for an Internal Pilots Design

IP_PLAN Scalar describing whether power is
computed within the context of
planning an internal pilot (=0 if no
and =1 if yes)

1×1 0

N_IP Number of observations planned in
the future study in an internal pilot

1×1 None

RANK_IP Rank of the design matrix in the fu-
ture study in an internal pilot

1×1 None

Matrices Specifying Distributional Choices

MMETHOD List specifying HLT, PBT, WLK
power approximation

3× 1, 1× 3,
1× 1

[
4 2 2

]′
UCDF List specifying CDF approximation

for UNIREP (UN, HF, CM, GG,
BOX)

5× 1, 1× 5,
1× 1

[
2 2 2 2 2

]′
UMETHOD List specifying method for approxi-

mate E ε̃ and E ε̂
3× 1, 1× 3,
1× 1

[
2 2

]′
Matrices Specifying Precision of Output and Computations

ROUND Scalar specifying how many decimal
places to ROUND power values

1× 1 3

TOLERANCE Scalar specifying what the software
considers numeric zero

1× 1 1× 10−12

Matrices Specifying Options Turned On and Off

OPT_ON User options to turn on 1 row or col See Tables 7 and 8
OPT_OFF User options to turn off 1 row or col See Tables 7 and 8

Matrix Specifying Output Dataset

DSNAME Specifies output SAS file name and
location

1× 2, 2× 1,
1× 3, 3× 1

{WORK DODFAULT

WORK}

Table 4: Additional POWERLIB input matrices.
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also checks for other possible errors in the user input matrices, ensuring that they contain
plausible values.

Specifying the design matrix X

The essence matrix (Helms 1988) contains one and only one copy of each unique row of the
original matrix. We use this notation for X to ease the selection of sample sizes for which to
compute power. For example, the following shows the X matrix for an independent groups
t test, with 10 observations, denoted as X1, in terms of its essence matrix:

X1 =

[
110 010

010 110

]
=

[
1 0
0 1

]
⊗ 110

= Es (X1)⊗ 110.

110 denotes a 10 × 1 vector of 1’s and 010 a 10 × 1 vector of 0’s. The ⊗ symbol denotes
the Kronecker multiplication operator, where A⊗B = {aij ·B} for any matrices A and B.
See Muller and Fetterman (2002) for an introduction to ANOVA coding in one- and two-way
designs.

The program assumes that X is specified in terms of its essence matrix and row replication
factor. The values are specified with the matrices ESSENCEX and REPN, respectively. Above,
X1 is specified with:

ESSENCEX = I(2);

REPN = 10;

The X matrix can also always be given as an essence matrix equal to the entire matrix and
replication of one. In this way, X1 can be specified with:

ESSENCEX = I(2) @ J(10,1,1);

REPN = 1;

Above, X1 has equal cell sizes. The program can tolerate unequal cell sizes through no special
coding. As an example, consider:

X2 =

110 010 010

015 115 015

020 020 120

 .

One way to specify the design matrix X2 is:

ESSENCEX = {1 0 0, 1 0 0,

0 1 0, 0 1 0, 0 1 0,

0 0 1, 0 0 1, 0 0 1, 0 0 1};

REPN = 5;
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Alternately, as mentioned previously, X can be specified with ESSENCEX as the entire X
matrix and REPN = 1. In this representation, X2 is coded as:

ONE = {1 0 0};

TWO = {0 1 0};

THREE = {0 0 1};

ESSENCEX = REPEAT(ONE, 10, 1) // REPEAT(TWO, 15, 1) // REPEAT(THREE, 20, 1);

REPN = 1;

Finally, POWERLIB allows X to have fractional cell sizes, e.g, REPN = DO(1 TO 5 BY .5)′,
by specifying the FRACREPN option. Section 2.7 discusses how to designate this and other
options available with POWERLIB.

2.5. A simple power program – one power value from a two sample t test

Table 5 gives the complete code needed to compute power for a two-sample t test with ten
observations per group and cell mean coding. The program computes one power value and is
an example of the simplest program that can be written to call POWERLIB. Note that for
univariate models, Σ = σ2, a variance, not a standard deviation.

2.6. Producing power for a range of scenarios

POWERLIB makes it easy to compute power for ranges of values of sample size, type I error,
mean difference, variance, and correlation level among response variables, through the global
matrices REPN, ALPHA, BETASCAL, SIGSCAL, and RHOSCAL, respectively.

REPN and ALPHA contain simple lists of desired sample size and significance levels. BETASCAL

and SIGSCAL contain multipliers for the user-specified values of BETA and SIGMA, respec-
tively. BETASCAL could be called THETASCAL because it also multiplies Θ by the same amount.
RHOSCAL contains multipliers for the model correlation matrix created internally from SIGMA.

REPN, ALPHA, BETASCAL, SIGSCAL, and RHOSCAL are each always a 1×n or n× 1 vector. Each
equals 1 by default, the equivalent of no change from the original model specification. When
more than one of these matrices has been changed from the default, power is computed for
all factorial combinations of inputs.

Table 6 generalizes the code in Table 5. The new inputs ask for:

1. 2 values of REPN,

2. 10 values of BETASCAL,

3. 3 values of SIGSCAL, and

4. 3 values of ALPHA.

The values lead to computing power for:

1. total sample sizes of 20 and 40,

2. mean differences of µ1 − µ2 = 0, µ1 − µ2 = 0.1, µ1 − µ2 = 0.2, . . . , µ1 − µ2 = 0.9,
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Program code:

PROC IML SYMSIZE=2000;

%INCLUDE "..\IML\POWERLIB22.IML"/NOSOURCE2;

ESSENCEX = I(2) ;

REPN = {10};

BETA = {0 1}`;

SIGMA = {1}; *=variance, because here covariance matrix is 1x1 ;

C = {1 -1};

RUN POWER;

Output:

ALPHA SIGSCAL BETASCAL TOTAL_N POWER

0.05 1 1 20 0.562

Table 5: The simplest power program.

PROC IML SYMSIZE=2000;

%INCLUDE "..\IML\POWERLIB2.IML"/NOSOURCE2;

BETA = {0 1}`;

C = {1 -1};

SIGMA = {1}; *=variance, because covariance "matrix" is 1x1 ;

ESSENCEX = I(2);

REPN = {10 20};

BETASCAL = DO(0,.9,.1);

SIGSCAL = {.5 1 2};

ALPHA = {.005 .01 .05};

RUN POWER;

Table 6: Producing power for a range of scenarios.
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Figure 1: Power curve over several values of mean difference and sigma.

3. σ2 = 0.5, σ2 = 1.0, and σ2 = 2.0, and

4. α = 0.005, α = 0.01, and α = 0.05,

for a total of 2 · 10 · 3 · 3 computed power values.

The matrices described in this section are especially useful for producing power curves. Such
graphical displays of power over a wide range of study design parameters are far more helpful
than computation of point estimates. Figure 1 gives the output of Example 1 in the Examples
folder of the software distribution. This program computes power over several values of mean
difference (linear combination of elements of B).

2.7. Power computation, printing, and output options

Overview

The next five sections describe the two global input matrices OPT_ON and OPT_OFF. Entries
of these matrices are options which the user may specify to modify output produced by
POWERLIB. These options allow the user to specify:

1. options that choose which hypothesis test statistic(s) are computed,

2. additional model specification options,

3. options that specify which columns are included in the final output matrix _HOLDPOWER,
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4. options that specify which matrices are printed to the screen by default,

5. overall printing and warning notification options, and

6. options that control whether a SAS dataset is produced.

Tables 7 and 8 give a list of all possible entries (options) for OPT_ON and OPT_OFF. Assigning
values to OPT_ON causes those options to be turned on; values in OPT_OFF are turned off. Both
matrices must have only one row or have only one column. Order does not matter, nor does
upper or lower case. The default selection of options corresponds to:

OPT_ON = { GG HLT PBT WLK COLLAPSE ALPHA SIGSCAL BETASCAL TOTAL_N ESSENCEX

BETA SIGMA RHO C U CBETAU WARN };

OPT_OFF = { UN HF CM BOX LTFR FRACREPN ORTHU UNIFORCE NONCENCL POWERCASE

SIGTYPE RHOSCAL MAXRHOSQ CLTYPE N_EST RANK_EST ALPHA_CL ALPHA_CU

UMETHOD MMETHOD FMETHOD UCDF IP_PLAN N_IP RANK_IP RANKX RANKC RANKU

THETA0 NOPRINT DS };

By default, selecting certain options automatically turns on some other options. In particular,

THETA0 is on if THETA0 is specified by the user,

SIGTYPE is on if SIGTYPE=1,

CLTYPE, ALPHA_CL, and ALPHA_CU are on if CLTYPE≥ 1, and

IP_PLAN is on if IP_PLAN=1.

Options GG, BOX, UN, HLT, PBT, and WLK are disallowed when computing power for high di-
mension, low sample size studies with B > (N − r). Since options GG, HLT, PBT, and WLK are
on by default, the user must manually specify these options in OPT_OFF or the program will
return an error. Details on computing power for high dimension, low sample size studies are
given in section 2.10.

Choosing the hypothesis test statistic

POWERLIB can compute power for the Box, Geisser-Greenhouse, Huynh-Feldt, Chi-Muller,
and uncorrected UNIREP tests, as well as the Hotelling Lawley Trace, Pillai-Bartlett Trace,
and Wilks Lambda MULTIREP tests. To have power computed for each of these tests,
specify the BOX, GG, HF, CM, UN, HLT, PBT, or WLK options, respectively, in OPT_ON. The three
MULTIREP tests and the Geisser-Greenhouse UNIREP test are computed by default. If
power for these tests is not desired, specify the corresponding option in OPT_OFF. Power for
each separate test statistic requested is given a separate column in the output dataset.

When b = 1 (and a ≥ 1), the UNIREP and MULTIREP tests coincide to give the familiar
univariate linear model test. If the COLLAPSE option is on (as is the default), and if b = 1
(and a ≥ 1), all MULTIREP and UNIREP powers would coincide, and, as a result, combine
into one output column labeled POWER. If the collapse option is on, with b > 1 and a = 1,
then all MULTIREP variable powers are combined into one column labeled POWER_MULT.
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Option Name Description Default ON?

Options to Specify the Hypothesis Tests for Which Power is Computed

UN Compute power for UNIREP uncorrected
HF Compute power for UNIREP Huynh-Feldt
GG Compute power for UNIREP Geisser-Greenhouse X
CM Compute power for UNIREP Chi-Muller
BOX Compute power for UNIREP Box
HLT Compute power for Hotelling-Lawley Trace X
PBT Compute power for Pillai-Bartlett Trace X
WLK Compute power for Wilks’ Lambda X
COLLAPSE s = 1 powers reduce to 1 column X

Model Specification Options

LTFR Allow use of less than full rank X
FRACREPN Allow use of fractional REPN values
ORTHU Allow use of non-orthonormal U
UNIFORCE Allow computation of power for a non-orthonormal

U matrix
NONCENCL Compute confidence limits for noncentrality

Options to Specify Which Inputs are Included in the Output Power Matrix

POWERCASE Include row #
ALPHA Include ALPHA X
SIGSCAL Include SIGSCAL X
SIGTYPE Include SIGTYPE if SIGTYPE≥ 1
RHOSCAL Include RHOSCAL

BETASCAL Include BETASCAL X
TOTAL_N Include TOTAL_N X
MAXRHOSQ Include max canonical correlation
CLTYPE Include CLTYPE if CLTYPE≥ 1
N_EST Include N_EST

RANK_EST Include RANK_EST

ALPHA_CL Include ALPHA_CL if CLTYPE≥ 1
ALPHA_CU Include ALPHA_CU if CLTYPE≥ 1
UMETHOD Include UMETHOD

MMETHOD Include MMETHOD

FMETHOD Include FMETHOD

UCDF Include UCDF

IP_PLAN Include IP_PLAN

N_IP Include N_IP

RANK_IP Include RANK_IP

Table 7: Power computation options specified in OPT_ON or OPT_OFF.
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Option Name Description Default ON?

Options to Control Which Matrices are Printed

ESSENCEX Print ESSENCEX matrix X
RANKX Print the rank of the X matrix
BETA Print B matrix X
SIGMA Print Σ matrix X
RHO Print RHO matrix X
C Print C matrix X
RANKC Print the rank of the C matrix
U Print U matrix X
RANKU Print the rank of the U matrix
THETA0 Print Θ0 matrix if THETA06= 0
CBETAU Print CBU matrix X

Global Printing Options

WARN Print power program warnings X
NOPRINT Suppress all printed output
CMWARN Print warning for large number of variables when

requesting the Chi-Muller test

Option to Create a Dataset Containing Power Calculations

DS Write _HOLDPOWER to a SAS file
with variable names _HOLDPOWERLBL

Table 8: Printing and dataset options specified in OPT_ON or OPT_OFF.
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Additional model specification options

By default:

1. X must be full rank.

2. REPN must contain whole numbers.

3. U must be orthonormal.

The LTFR option allows choice of less than full rank X. The FRACREPN option allows choice
of fractional values in REPN. Specifying the ORTHU option allows the user to specify a non-
orthonormal U matrix, which POWERLIB will then convert into an appropriate orthonormal
matrix for use in power calculations. Note that user utility modules UPOLY1, UPOLY2, and
UPOLY3 (documented in section 2.15) may also be used to create orthonormal contrast matri-
ces for 1–3 within or between factors. Option UNIFORCE is similar to ORTHU in that it allows
specification of a non-orthonormal U matrix from the user, but in this case, POWERLIB per-
forms no changes to the matrix and continues to compute power based on a non-orthonormal
U matrix. Option UNIFORCE should be used with caution, and the user assumes responsbility
that the results are the ones desired. Option NONCENCL allows computation of confidence
limits for noncentrality when confidence limits are requested by the user.

Specifying columns included in the output matrix

Table 9 lists all possible columns included in the output matrix _HOLDPOWER. Most are not
included by default. To add or remove columns, include the option of the same name from
the third section of Table 7 in OPT_ON or OPT_OFF. Note that asking the program to compute
confidence limits for power values adds the columns with suffixes _L and _U to the output
matrix.

Options that control printing and warnings

POWERLIB prints several matrices to the screen by default after power computations are
completed. The first section of Table 8 lists possible choices and defaults. User inspection of
these matrices is important to verify that the model matrices specified to POWERLIB are
those intended.

Specifying the NOPRINT option in OPT_ON ensures that no matrices are printed, including
the final _HOLDPOWER output matrix. This option is especially useful when power values are
output to a dataset and when many power values are computed in a simulation study.

By default, POWERLIB writes helpful warnings to the screen even when no fatal syntax error
is present. To prevent the warnings from printing, specify the WARN option in OPT_OFF.

Output to a dataset

To create a dataset, the user must specify the name of the dataset in the input matrix DSNAME,
as well as include the DS option in the matrix OPT_ON.

The user can name the data file by defining DSNAME as follows:

DSNAME = { libref membername };
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Column Label Description

ALPHA Type I error, α value for power calculation
ALPHA_CL α value for power lower confidence limit
ALPHA_CU α value for power upper confidence limit
BETASCAL Multiplier for B
CLTYPE Descriptor for type of confidence interval computed
EPSILON Population value of ε for UNIREP test power
EXEPS_test Approximate E ε̂ for UNIREP test
FMETHOD F probability calculation method with COLLAPSE option
FMETHOD_test F probability calculation method for test
FMETHOD_L F probability calculation method for lower CL with COLLAPSE option
FMETHOD_test_L F probability calculation method for lower CL for test
FMETHOD_U F probability calculation method for upper CL with COLLAPSE option
FMETHOD_test_U F probability calculation method for upper CL for test
IP_PLAN Indicator for whether or not power is computed within the context of an

internal pilot design
MAXRHOSQ Maximum canonical correlation
N_EST # of obs. which gave Σ and/or B estimates
N_IP Number of observations planned in the future study in an internal pilot
NONCEN Computed noncentrality with COLLAPSE option

NONCEN_test Computed noncentrality for test
NONCEN_L Lower confidence limit for noncentrality with COLLAPSE option
NONCEN_test_L Lower confidence limit for noncentrality for test
NONCEN_U Upper confidence limit for noncentrality with COLLAPSE option
NONCEN_test_U Upper confidence limit for noncentrality for test
POWER Computed power with COLLAPSE option
POWER_test Computed power for test
POWER_L Lower confidence limit for power with COLLAPSE option
POWER_test_L Lower confidence limit for power for test
POWER_U Upper confidence limit for power with COLLAPSE option
POWER_test_U Upper confidence limit for power for test
POWERCASE Row number of _HOLDPOWER matrix
RANK_EST rank(X) in analysis providing Σ and/or B estimates
RANK_IP Rank of the design matrix in the future study in an internal pilot
RHOSCAL Multiplier for correlations from Σ
SIGSCAL Multiplier for Σ
SIGTYPE Indicator for whether Σ is known or estimated
TOTAL_N Total sample size
UCDF_test CDF approximation used for power for UNIREP test
UMETHOD_test Method used for calculating E (ε̃) for UNIREP test

test ∈ UN, HF, CM, GG, BOX, HLT, PBT, WLK

Table 9: All possible column labels for output matrix _HOLDPOWER.
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For example, if DSNAME = {IN1 MYDATA}, the output file will be called IN1.MYDATA. Here IN1

refers to a library defined by a LIBNAME statement.

If DSNAME is not defined and the DS option is also selected, or if “membername” already exists
in the library specified by “libref,” a default file name is used. The default file names are
numbered and of the form WORK.PWRDT### (where ### is a number). The program scans the
library for the largest numbered data file and assigns the next number to the new data file.
The maximum ### is 999. If PWRDT999 exists, then no more data files can be created. Note
that the program uses the name _PWRDTMP as an intermediate file. If this file already exists
in the specified library, then no files can be created. To use a library other than WORK as the
default, define:

DSNAME = {libref membername defaultlib};

The software will not write over existing files. To continually write to the same file with
multiple runs of the power software, the user must consciously delete the existing file. To
delete a file IN1.MYDATA, for example, execute the statement:

CALL DELETE (IN, MYDATA);

prior to executing the software.

2.8. Computing power with estimated variance

Table 10 describes the full suite of cases for which POWERLIB can compute a point estimate
and confidence limits for power given all possible combinations of known or estimated Σ and
B.

Confidence Limits for Power

In power analysis, B and Σ are assumed known constants. In practice, however, estimates of
Σ only, or of both B and Σ from a previous study, are often used. The randomness of these
estimates creates randomness in resulting power values. Confidence intervals about power
values, and confidence regions about power curves, greatly help in planning by accounting
for the uncertainty due to using estimates. Of all current software, only POWERLIB allows
computing confidence intervals for power in Gaussian linear models.

Taylor and Muller (1995, 1996) provided theory for calculation of exact confidence intervals
for univariate linear models with Gaussian errors. Gribbin (2007) and Park (2007) developed
approximate confidence intervals for UNIREP and MULTIREP tests, respectively. These
methods are exact for univariate models and for the MULTIREP tests when s = 1. For
confidence limits for multivariate tests, we assume the user has given the (unbiased) REML
estimate for Σ. Note that the current version of the program does not allow compensating for
the bias of truncation discussed in Taylor and Muller (1996) and Muller and Pasour (1997).

The CLTYPE, RANK_EST, N_EST, ALPHA_CL, and ALPHA_CU input matrices specify how confi-
dence limits are computed for all test powers.

CLTYPE specifies what type of confidence limits are computed and takes the following values:

< 1 ⇒ No confidence limits are calculated; assumes B and Σ are known.
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Σ B Univariate UNIREP MULTIREP

Power Point Estimate

Known Known Yes Yes Yes
Estimated Known Yes1 Yes Yes1

Estimated Estimated Yes1 Yes2 Yes1

Power Confidence Limits

Known Known No3 No3 No3

Estimated Known Yes Yes Yes
Estimated Estimated Yes No4 Yes

Table 10: POWERLIB computation of the power point estimate and confidence limits for
combinations of known and estimated Σ and B.

1 These combinations of Σ and B can be treated appropriately by POWERLIB; how-
ever, the resulting power point estimate provided by POWERLIB will be equivalent to
the power computed assuming known Σ and known B. The estimate of power provided
is a median unbiased estimator, and is either the REML or ML estimate, depending
on whether a REML or ML estimate was input for Σ. Taylor and Muller (1995, 1996)
described how a mean unbiased estimator of noncentrality can lead to negative estimates,
which are impossible values, and are therefore improper, so the median unbiased estimator is
recommended. The user with estimated Σ and known or estimated B who wishes to compute
power for a univariate or MULTIREP test should simply input these as Σ and B. No
additional matrices or options are required to designate Σ or B as estimated. In particular,
POWERLIB will return the same power value whether SIGTYPE=1 or SIGTYPE=0 is specified.
Further, there is no explicit option in POWERLIB to specify B as estimated, if appropriate,
in the computation of the power point estimate. (Note that the matrix CLTYPE provides
a way to specify B as estimated only for the purpose of computing confidence limits for power.)

2 This case can be implemented with POWERLIB similarly as described in footnote
1. The user with estimated Σ and estimated B who wishes to compute power for a UNIREP
test should input these as Σ and B. For the UNIREP tests, the estimate of power computed
by POWERLIB when Σ is estimated will be different than the power computed when Σ is
known, so the user must also specify SIGTYPE=1.

3 Computation of confidence limits in POWERLIB requires estimated Σ.

4 Theory for this case has been developed by the authors, but has not been published, so has
intentionally not been implemented.



20 POWERLIB Software for Multivariate Linear Models Power, Version 2.2

= 1 ⇒ Confidence limits for B known and Σ estimated are calculated.

= 2 ⇒ Confidence limits for B estimated and Σ estimated are calculated.

Confidence limits with Σ estimated and B known are available for all hypothesis tests available
in POWERLIB. Currently, confidence limits where both B and Σ have been estimated are
available for univariate linear models (b = 1) only. Future research is needed to develop theory
for confidence limits for multivariate tests in this case. We caution the reader that only very
narrow conditions make using an estimate of B a defensible choice (Lenth 2001).

If CLTYPE ≥ 1, then RANK_EST and N_EST are required inputs. RANK_EST describes the rank of
the design matrix from the previous study from which B and Σ were obtained. N_EST gives
the total sample size of the previous study.

ALPHA_CL and ALPHA_CU specify the desired lower and upper tail probabilities, respectively,
for confidence limits computations. Both have default values equal to 0.025.

Table 11 gives an example of the additional code needed to create confidence limits for power.
For the entire context of this code, see Example 6 in the Examples folder of the software
distribution.

Figure 2, also produced by code in Example 6, shows an example of a useful plot for deter-
mining the impact of estimation of power parameters.

Computing the power point estimate for estimated variance

The input matrix SIGTYPE, a new addition to this version of POWERLIB, allows a point
estimate for power to be computed based on estimated Σ. This can be computed with or
without computing associated confidence limits for power as described in the previous section.

Power based on estimated Σ is available for all tests. To request a point estimate for power
based on estimated Σ, the user must simply specify SIGTYPE = 1 as an input matrix. As with
specification of CLTYPE ≥ 1, RANK_EST and N_EST are required inputs when SIGTYPE = 1.

Example 8 illustrates computation of a power estimate for power based on estimated Σ.

2.9. Computing power for internal pilot designs

The power of a test depends on specifying the population error variance Σ, which is usually
unknown. To get around this, most researchers will instead use the variance from a previous
study and treat it as known. Doing this ignores the randomness introduced into the calculation
of sample size by using estimated Σ and may lead to increased type I error rates.

One way to accurately estimate power for a future study given an estimated Σ from a previous
study is to perform an internal pilot study. In this case, power and required sample size are
estimated both at the beginning of the study and at a pre-specified point during the study.
The interim power calculation allows use of Σ that has been estimated from the current study,
so that the required study sample size can be increased or decreased based on its value.

Version 2.2 of POWERLIB implements theory described in Coffey and Muller (2003) in order
to compute power at the time of the interim power calculation. Theory is available for
computation of power for both univariate and UNIREP tests only and has not been developed
for MULTIREP tests.
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Figure 2: Plot of confidence limits.

CLTYPE = 1;

N_EST = 21; *# Obs for variance estimate;

RANK_EST = 1; *# model df for study giving variance estimate;

ALPHA_CL = 0.025; *Lower confidence limit tail size;

ALPHA_CU = 0.025; *Upper confidence limit tail size;

Table 11: Additional code to create confidence limits for power.
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To compute power within the framework on an internal pilot design, the user should specify
the input matrix IP_PLAN=1. The user must also specify the number of obervations and rank
of the design matrix in the future study in input matricies N_IP and RANK_IP.

Computing power in the framework of an internal pilot treats Σ as known, and, as a result,
disallows use of SIGTYPE and CLTYPE to specify use of estimated Σ for computation of power
point estimates and confidence limits.

Table 12 summarizes the power computations available in POWERLIB for the context of
internal pilot designs.

2.10. Computing power for high dimension, low sample size data

High dimension, low sample data occur when the number of subjects is less than the number
of variables. Fields such as genetics, metabolomics, and proteomics often produce data with
this property. Version 2.2 of POWERLIB now includes computation of an extension of the
Huynh-Felt estimator proposed by Chi, Gribbin, Johnson, and Muller (2014) that provides
accurate type I error and power computations for high dimension, low sample size data.
Extensive simulations of group comparisons support the accuracy of the approximations even
when the ratio of number of variables to sample size is large. Power can be computed for
any multivariate model test. The test provides accurate error control when computing power
assuming either fixed or estimated Σ. Table 13 summarizes the power computations available
in POWERLIB for high dimension, low sample size data.

The test proposed by Chi et al. (2014) can be requested by specifying the CM option in OPT_ON.
While this test improves accuracy of type I error and power over other tests most greatly for
high dimension, low sample size data, the test proposed by Chi et al. (2014) can be requested
for any data, including data with large sample size compared to the number of variables.
Since the estimator has been developed assuming both fixed and estimated Σ, the software
supports specifying SIGTYPE=1 or CLTYPE>=1 with the test, so that a point estimate based on
estimated Σ or confidence limits for power can be produced.

Increasing the number of variables substantially may lead to a request for more computer
memory than is available. Testing by the authors has shown that models with ≤ 3000 repeated
measures should be computationally feasible on most computing systems. The option CMWARN

is specified in OPT_ON by default and provides an error to the user if a model with > 3000
repeated measures is fit. This option can be turned off by specifying CMWARN in OPT_OFF,
so that power is computed for models with > 3000 repeated measures. Turning off CMWARN

should be done with caution; the user accepts responsibility for potential program failure due
to insufficient memory.

2.11. Choosing power approximations

Overview

All powers are approximated by noncentral F probabilities. Approximations are used for all
tests whenever s = min (a, b) > 1, and for the UNIREP tests whenever b > 1 (whether or
not a = 1). All MULTIREP tests’ powers (and test sizes) coincide whenever s = 1, while
MULTIREP and UNIREP powers (and test sizes) all coincide if b = 1.

Naturally, the default approximation methods have been chosen, given the current state
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Σ B Univariate UNIREP MULTIREP

Power Point Estimate

Known Known Yes1 Yes No2

Estimated Known No3 No3 No3

Estimated Estimated No3 No3 No3

Power Confidence Limits

Known Known No4 No4 No4

Estimated Known No3 No3 No3

Estimated Estimated No3 No3 No3

Table 12: POWERLIB computation of the power point estimate and confidence limits for
combinations of known and estimated Σ and B for internal pilot studies.

1 Theory for computing power for a univariate model test within the context of an in-
ternal pilot design is the same as for the usual case with fixed Σ and fixed B. Therefore
this case is treated appropriately by POWERLIB whether the user specifies IP_PLAN=1 or
IP_PLAN=0.

2 Theory for this case has been developed by the authors, but has not been pub-
lished, so has intentionally not been implemented.

3 Computation of power for an internal pilot design requires known Σ and B.

4 Computation of confidence limits in POWERLIB requires estimated Σ.
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Σ B Univariate UNIREP MULTIREP

Power Point Estimate

Known Known No1 Yes2 No3

Estimated Known No1 Yes2 No3

Estimated Estimated No1 Yes2 No3

Power Confidence Limits

Known Known No1,4 No4 No3,4

Estimated Known No1 Yes2 No3

Estimated Estimated No1 No5 No3

Table 13: POWERLIB computation of the power point estimate and confidence limits for
combinations of known and estimated Σ and B with high dimension, low sample size data.

1 Any univariate test does not apply to high dimension, low sample size data, because
high dimension data implies that data have repeated measures outcomes.

2 The Geisser-Greenhouse, Box, and uncorrected UNIREP tests have poor properties
when applied to high dimension, low sample size data, so they are disallowed. Only power
for UNIREP Huynh-Feldt and Chi-Muller tests can be computed by POWERLIB for HDLSS
data.

3 Satisfactory theory has not been developed for power calculations for MULTIREP
tests when applied to high dimension, low sample size data.

4 Computation of confidence limits in POWERLIB requires estimated Σ.

5 Theory for this case has been developed by the authors, but has not been published, so has
intentionally not been implemented.
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of knowledge, as the best available option; hence, most users will never need to change the
approximation methods from the default. The inclusion of the information allows comparisons
to earlier versions of POWERLIB and other program output to improve future developments.

The next two sections discuss the input matrices UMETHOD, UCDF, and MMETHOD used to specify
the distributional approximations used in computing power for the UNIREP and MULTIREP
tests, respectively. Choices for these matrices are summarized in Table 14.

Choosing UNIREP approximations

The software allows the user to choose one of four approximations for the distribution of the
UNIREP test statistic under the alternative via the values of UCDF shown in Table 14.

The default is UCDF = {2, 2, 2, 2, 2}, with all five UNIREP tests using the Muller et al.
(2007) approximation for the distribution of the test statistic under the alternative. Exact
results may be achieved, at the cost of computing time, for the uncorrected (UN) and Box
tests by specifying UCDF = {3, 2, 2, 2, 3}.

UMETHOD specifies whether to use the Muller and Barton (1989) or Muller et al. (2007) ap-
proximations for E (ε̃) and E (ε̂). In turn, this option implies the approximate critical value
used for the HF, CM, and GG tests. The default is UMETHOD = {2,2,2}.

Choosing MULTIREP approximations

For the MULTIREP tests, the Muller and Peterson (1984) approach requires specifying ap-
proximate degrees of freedom, which implies a critical value via the FINV() function, and an
approximate noncentrality. By default, the program uses two moment approximations (Rao
1951; McKeon 1974; Muller 1998) for the null distributions, which imply degrees of freedom
and critical values. Optionally, older and less accurate one moment methods are also avail-
able (Pillai 1954, 1955; Pillai and Samson 1959). By default, the MULTIREP tests use the
Muller and Peterson (1984) noncentrality approximations. Each MULTIREP noncentrality
may be multiplied by N/[N− rank(X)], as recommended by O’Brien and Shieh (1992). Using
the O’Brien and Shieh (1992) multiplier gives slightly larger approximate powers. Especially
for the Hotelling-Lawley test, the original Muller and Peterson (1984) noncentralities can be
somewhat conservative in small samples.

Power approximations used for MULTIREP tests can be specified in the matrix MMETHOD.
MMETHOD is a 3×1 vector whose elements correspond to one of four choices for the method used
for the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests, respectively,
as given in Table 14. The duplication of settings for Wilks’ test is merely for programming
convenience.

The default setting is MMETHOD ={4,2,2}. Use of the O’Brien and Shieh (1992) multiplier for
all three multivariate tests may be chosen by setting MMETHOD = {4,4,4} or MMETHOD = 4,
since MMETHOD can be specified as a 1× 1 matrix if all the entries are the same.

2.12. F distribution probability calculations

In all but the most extreme cases, POWERLIBcomputes the probabilities from an F dis-
tribution, which is necessary for power computations, using the SAS supplied CDF function.
If an evaluation of the extremeness of conditions indicates a likelihood of the CDF function
failing, then POWERLIB computes F probabilities using the Tiku approximation (Kotz, Bal-
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Choice for CDF approximation for all UNIREP tests

UCDF[1] → Choice for Uncorrected test
UCDF[2] → Choice for Huynh-Feldt test
UCDF[3] → Choice for Chi-Muller test
UCDF[4] → Choice for Geisser-Greenhouse test
UCDF[5] → Choice for Box test

UCDF[J]= 1 → Muller and Barton (1989) one moment approximation
= 2 → Muller et al. (2007) two moment approximation
= 3 → Exact via Davies (1980) method (Note: This may fail. If it

does, a missing value is returned.)
= 4 → Exact via Davies (1980) Method. If it fails, use Muller et al.

(2007) approximation.

Choice for expectation of epsilon for Huynh-Feldt, Chi-Muller, and Geisser-Greenhouse

UMETHOD[1]= 1 → Muller and Barton (1989) approximation for HF E (ε̃)
= 2 → Muller et al. (2007) approximation for HF E (ε̃)

UMETHOD[2]= 1 → Muller and Barton (1989) approximation for CM E (ε̃)
= 2 → Muller et al. (2007) approximation for CM E (ε̃)

UMETHOD[3]= 1 → Muller and Barton (1989) approximation for GG E (ε̂)
= 2 → Muller et al. (2007) approximation for GG E (ε̂)

Choice of CDF approximation for Hotelling-Lawley Trace

MMETHOD[1]= 1 → Pillai (1954, 1955) one moment null approximation
= 2 → McKeon (1974) two moment null approximation
= 3 → Pillai and Samson (1959) one moment null approximation +

O’Brien and Shieh (1992) noncentrality multiplier
= 4 → McKeon (1974) two moment null approximation + O’Brien

and Shieh (1992) noncentrality multiplier

Choices of CDF approximation for Pillai-Bartlett Trace

MMETHOD[2]= 1 → Pillai (1954, 1955) one moment null approximation
= 2 → Muller (1998) two moment null approximation
= 3 → Pillai and Samson (1959) one moment null approximation +

O’Brien and Shieh (1992) noncentrality multiplier
= 4 → Muller (1998) two moment null approximation + O’Brien

and Shieh (1992) noncentrality multiplier

Choices of CDF approximation for Wilks’ Lambda

MMETHOD[3]= 1 → Rao (1951) two moment null approximation
= 2 → Rao (1951) two moment null approximation
= 3 → Rao (1951) two moment null approximation + O’Brien and

Shieh (1992) noncentrality multiplier
= 4 → Rao (1951) two moment null approximation + O’Brien and

Shieh (1992) noncentrality multiplier

Table 14: UNIREP and MULTIREP distributional approximation methods.
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akrishnan, and Johnson 2000). In situations where the Tiku approximations fails or will be
inaccurate, POWERLIB uses a Gaussian approximation via the CDF function.

The user can see which method has been used by specifying the FMETHOD option in the
OPT_ON matrix. This includes the FMETHOD columns listed in Table 9 into the output matrix
_HOLDPOWER. Note that these columns merely describe which methods have been used; the
user cannot modify the method chosen.

Values of FMETHOD are as follows:

= 1 ⇒ CDF function (no approximation),

= 2 ⇒ Tiku approximation (best approximation),

= 3 ⇒ Normal approximation, |Z-score|< 6 (worst approximation),

= 4⇒ Normal approximation, |Z-score|> 6 (power is almost certainly zero or one), and

= 5 ⇒ Power missing.

Difficulties with power calculations occur almost always when power approaches zero or one.

2.13. Numerical accuracy

The input matrices ROUND and TOLERANCE control the rounding of output values and the
threshold for judging whether a numerical value is judged to be zero, respectively. The
TOLERANCE matrix is included to provide a user with sophistication in computing methods
with some flexibility when working with large models.

2.14. Error checking

Counts of certain numerical difficulties are stored in entries of the output vector _POWERWARN.
Table 15 describes the elements of this matrix.

2.15. User utilities

Four modules that are useful for creating U contrast matrices are included. These are:

UMEAN UPOLY1 UPOLY2 UPOLY3.

UMEAN is a function module that generates a p × 1 U matrix, which computes the average
response, U = p−1

[
1 1 . . . 1

]′
. For example, it could create the matrix:

U =
[
1/5 1/5 1/5 1/5 1/5

]′
.

It has one input, p, which indicates the size of matrix to create. For any arbitrary value of p,
the user may execute:

U = UMEAN(p);
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Element Description

1 A Tiku approximation was used in calculating power.
2 A Z approximation was used in calculating power.
3 A Z approximation was used in calculating power and |Z| > 6, so that

the power returned is exactly 0 or 1.
4 Power is missing because the FINV function returned a missing value.
5 The lower confidence limit on power is conservative.
6 A Tiku approximation was used in calculating the lower confidence limit

on power.
7 A Z approximation was used in calculating the lower confidence limit on

power.
8 A Z approximation was used in calculating the lower confidence limit on

power and |Z| > 6, so that the power returned is exactly 0 or 1.
9 The lower confidence limit on power is missing because the FINV function

returned a missing value.
10 The upper confidence limit on power is conservative.
11 A Tiku approximation was used in calculating the upper confidence limit

on power.
12 A Z approximation was used in calculating the upper confidence limit

on power.
13 A Z approximation was used in calculating the upper confidence limit

on power and |Z|> 6, so that the power returned was exactly 0 or 1.
14 The upper confidence limit on power is missing because the FINV func-

tion returned a missing value.
15 Power is missing because because the noncentrality could not be com-

puted.
16 Confidence limits are missing because power is missing.
17 The approximate expected value of estimated epsilon was truncated up

to 1/b.
18 The approximate expected value of estimated epsilon was truncated

down to 1.
19 Power missing due to failure of Davies’ algorithm.
20 Inputs give off-diagonal correlation = 1 in RHO.
21 (N - R) <= 5, so power approximations may be inaccurate, especially

Huynh-Feldt.
22 Power values were rounded to 1 using the value contained in ROUND and

should not be be reported as Power = 1. For example, if ROUND = 3 then
report Power > 0.999.

23 Power is missing, because Uncorrected, Geisser-Greenhouse and Box
tests are poorly behaved (super low power and test size) when B > N-R,
i.e., HDLSS.

Table 15: Error messages in _POWERWARN.
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For example, the previous matrix would be obtained with U = UMEAN(5).

UPOLY1, UPOLY2, and UPOLY3 each generate U contrast matrices with orthogonal polynomial
coding for one, two, or three repeated factors, respectively, via the SAS ORPOL function.

UPOLY1 takes two inputs: VALUES and NAME. Here, VALUES is a k× 1 or 1× k vector that gives
the k levels of the single repeated factor. NAME is a 1 × 1 character matrix describing the
repeated factor. The module outputs two matrices: U and ULBL. Columns of U contain up to
level k − 1 polynomial contrasts; c contains labels for the order of the polynomial contrast
each column represents. The UPOLY1 module may be called using the following syntax:

CALL UPOLY1 (VALUES, NAME, U, ULBL);

As an example, the following code creates a U matrix with orthogonal polynomial contrasts
for four levels, 1, 10, 100, and 1000, of the factor DOSE:

LEVELS = {1, 10, 100, 1000};

FACTOR = {DOSE};

CALL UPOLY1 (LEVELS, FACTOR, U, ULBL);

PRINT U [COLNAME = ULBL];

The columns of U (as described by ULBL) are the linear, quadratic, and cubic polynomial
trends for DOSE. This produces the matrix:

DOSE1 DOSE2 DOSE3

U =


−0.330 0.442 −0.667
−0.320 0.314 0.741
−0.212 −0.836 −0.074

0.862 0.080 0.001

.

UPOLY2 and UPOLY3 generate U contrast matrices with orthogonal polynomial coding for two
and three repeated factors, respectively. Modules UPOLY2 and UPOLY3 work the same way as
the UPOLY1 module, except that they require 4 or 6 input matrices, respectively, and produce
6 or 12 matrices, respectively, due to adding one or two more factors. These modules are
called with the following syntax:

CALL UPOLY2 (VALUES1, NAME1, VALUES2, NAME2,

U1, U1LBL, U2, U2LBL, U12, U12LBL);

CALL UPOLY3 (VALUES1, NAME1, VALUES2, NAME2, VALUES3, NAME3,

U1, U1LBL, U2, U2LBL, U3, U3LBL,

U12, U12LBL, U13, U12LBL, U23, U23LBL, U123,U123LBL);

Here, VALUES1, VALUES2, and VALUES3 give the levels for factors 1, 2, and 3, respectively, and
NAME1, NAME2, NAME3 describe factors 1, 2, and 3, respectively.

Also, U1, U2, and U3 give the main effect contrasts for factors 1, 2, and 3, respectively, and
U12, U13, and U23 give the two way interaction contrasts for factor 1 with 2, 1 with 3, and 2
with 3, respectively. U123 gives the three-way interaction contrasts for factor 1 with 2 and 3.
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U1LBL, U2LBL, U3LBL, U12LBL, U13LBL, U23LBL, and U123LBL give column labels for matrices
U1, U2, U3, U12, U13, U23, and U123, respectively.

The following example code gives all orthogonal polynomial trends for three factors, AGE,
DRUG, and TIME, with levels {2, 4, 6}, {1, 2, 3}, and {10, 30, 60}:

LEVELS1 = {2, 4, 6};

NAME1 = "AGE";

LEVELS2 = {1, 2, 3};

NAME2 = "DRUG";

LEVELS3 = {10, 30, 60};

NAME3 = "TIME";

CALL UPOLY3 (LEVELS1, NAME1, LEVELS2, NAME2, LEVELS3, NAME3,

U1, U1LBL, U2, U2LBL, U3,U3LBL,

U12, U12LBL, U13, U13LBL, U23, U23LBL, U123,U123LBL);

PRINT U1 [COLNAME = U1LBL]; PRINT U2 [COLNAME = U2LBL];

PRINT U3 [COLNAME = U3LBL]; PRINT U12 [COLNAME = U12LBL];

PRINT U13 [COLNAME = U13LBL]; PRINT U23 [COLNAME = U23LBL];

PRINT U123 [COLNAME = U123LBL];

Again, numbers in the column labels describe the degree of the polynomial trend correspond-
ing to that column. Labels with one variable indicate a main effect; labels with two variable
names indicate a two-way interaction; labels with three variables indicate a three-way inter-
action. The following statements create a U orthogonal polynomial trends matrix including
all trends for main effects, two-way interactions, and the three-way interaction:

U = U1 || U2 || U3 || U12 || U13 || U23 || U123;

LBL = U1LBL || U2LBL || U3LBL || U12LBL || U13LBL || U23LBL || U123LBL;

3. Additional examples

The code, log, output listings, and required pre-existing datasets for all the following power
programs are found in the ZIP file available for download with this paper. They can be run in
an interactive or a batch environment. One change is needed for the user to run the programs.
The folder where the POWERLIB files and folders have been copied must be specified in the
macro variable ROOT with:

%LET ROOT = Your location here..;

This variable is used when bringing in the POWERLIB22.IML code as in the statement:

%INCLUDE "&ROOT.\Iml\POWERLIB22.IML"/NOSOURCE2;

Additionally, in order for the statement will run, the POWERLIB22.IML program is assumed to
reside in a sub-folder of the ROOT directory named IML. Similarly, some programs assume that
necessary, pre-existing datasets reside in a sub-folder of the ROOT directory named Data. The
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programs that create plots write all plots to a required existing Examples sub-folder of the
ROOT directory. Programs creating three-dimensional plots will likely also require changing
the FILENAME statement, as well as a few GOPTIONS, such as DEVICE, to tailor the output to
the particular computer.

3.1. Power for a t test with overlay plot

Example 1 calculates power for a two-sample t test. The hypothesis tested is whether the two
group means are equal. Power is computed for three values of σ2 and several values of mean
difference (B). Powers for these values are then plotted on a power curve.

3.2. Power for a paired t test

Example 2 performs power calculations for a simple paired t test using a general linear hypoth-
esis in a multivariate setting. The second section of code produces results equivalent to those
produced by the first section; however, it uses difference scores to test the null hypothesis of
no difference between group means.

3.3. Power for a t test with three-dimensional plot

Example 3 produces a three-dimensional graph that illustrates power trade offs among total
sample size and the hypothesized difference between two group means in an independent
groups t test.

3.4. Power for a test of an interaction term in a multivariate model

Example 4 performs a more complicated set of power calculations for a test of the hypothesis
of no time by treatment interaction in a multivariate model.

3.5. Test in a multivariate model with two within factors

Example 5 illustrates use of UPOLY2 for a design with two within- and no between-subject
factors. It uses SIGSCAL and combines results from multiple runs of the power module. The
results reproduce, except for some rounding differences, the predicted GG and HF powers in
Table III in Coffey and Muller (2003), which used version 1 of POWERLIB, based on Muller
and Barton (1989) methods. The example program also produces predicted Huynh-Feldt and
Geisser-Greenhouse powers using the methods from Muller et al. (2007), which are the default
in POWERLIB version 2.1. The new methods are far more accurate, especially for very small
(near 1/b) or very large (near 1) values of ε.

3.6. Confidence limits for a univariate model test

Example 6 produces three graphs showing two-sided or one-sided lower or upper confidence
limits for power, which reflect uncertainty in power calculations due to use of estimated
variance parameters. The program utilizes the power confidence limit calculations available
in POWERLIB and replicates the figures seen in Taylor and Muller (1995).
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3.7. Confidence limits for a UNIREP test in a multivariate model

Example 7 utilizes a dataset that contains cerebral vessel tortuosity measures for subjects
in four regions of the brain. A set of power calculations is performed for the test of the
hypothesis of no Gender-By-Region interaction with five age groups. Confidence limits are
computed for these power values.

Four graphical displays are produced:

1. three three-dimensional plots of power by sample size by mean difference, displayed on
different axes,

2. a plot of the hypothesized gender-By-region interaction with a sample size of 100 and
an approximate Geisser-Greenhouse power of 0.90,

3. a plot of Geisser-Greenhouse power curves for sample sizes of 20, 40, and 80 for the
gender-By-region interaction, and

4. a plot with confidence limits for power with N=40 from the third plot.

3.8. Point estimate for power of a UNIREP test based on estimated variance

Example 8 illustrates use of the SIGTYPE input matrix to compute a point estimate for power
assuming estimated Σ. Powers computed assuming both fixed and estimated Σ are compared
using the sample data from Example 7.

3.9. Power within the context of an internal pilot design

Example 9 illustrates use of the IP_PLAN input matrix to compute power when designing
an internal pilot study. Powers computed in Example 5, not in an internal pilot design, are
re-computed for use in planning an internal pilot study.

3.10. Power for high dimension, low sample size data

Example 10 performs power calculations for the UNIREP test statistic proposed by Chi et al.
(2014) for high dimension, low sample size data. It reproduces the power calculations for a
study of vitamin B6 deficiency described in Section 4 of Chi et al. (2014).

3.11. Illustrate use of the UPOLY1 module

Example 11 demonstrates the use of the UPOLY1 module when performing power calculations
for a time by treatment interaction.

3.12. Illustrate use of the UPOLY3 module

The first part of Example 12 demonstrates the direct creation of three-way contrast matrices
of two types: orthonormal polynomials and pair-wise differences to a reference level. As
long as cell mean coding is used for a factorial design (including the special case of a one-
way design), the approach taken to create U matrices may be applied to C matrices, and
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vice versa, with the obvious change of transposing matrices. Although we recommend using
UPOLY3, this example is intended to provide a basis for creating contrasts for more unusual
designs. The second part of Example 12 demonstrates creation of the same contrast matrices
using the UPOLY3 module.

4. Concluding remarks

For those familiar with SAS, POWERLIB substantially increases the power analysis capabil-
ities related to univariate and multivariate linear models. With some simple manipulations
of code in SAS/IML, one can calculate power for a wide range of tests and for a variety of
approximation methods associated with them. At the same time, users who wish to use the
best approximation methods available can simply use the default options in POWERLIB.
POWERLIB offers cutting-edge power analysis capabilities, such as confidence intervals for
power and power analysis for a special class of linear mixed models. For these reasons among
others, POWERLIB is a capable tool for any SAS user who needs comprehensive sample size
calculations when planning a study. Additionally, the ability to easily implement POWERLIB
in simulation studies makes it a useful tool for those researching statistical power in general.

Acknowledgments

Over the past twenty years, this power software has evolved through multiple versions.
Bercedis Peterson and Keith Muller wrote the first version of POWERLIB for PROC MATRIX in
1984. Lynette Keyes and Keith Muller updated the first version of POWERLIB for SAS/IML
in 1992. Keyes also provided the first version of this manual, which was in turn based on
the PROC MATRIX manual. Doug Taylor created code for confidence limits calculations which
Keith Muller then used to create POWERLIM in 2001. Jacqueline Johnson, Keith Muller,
James Slaughter, Matthew Gurka, Matthew Gribbin, and Sean Simpson programmed Version
2.1 in 2003. Programming of this version by the authors began in 2012.

References

Chi YY, Gribbin MJ, Johnson JL, Muller KE (2014). “Power Calculation for Overall Hy-
pothesis Testing with High-Dimensional Commensurate Outcomes.” Statistics in Medicine,
To appear.

Coffey CS, Muller KE (2003). “Properties of Internal Pilots with the Univariate Approach to
Repeated Measures.” Statistics in Medicine, 22(15), 2469–2485.

Davies RB (1980). “Algorithm AS 155: The Distribution of a Linear Combination of Chi-
Square Random Variables.” Applied Statistics, 29, 323–333.

Gribbin MJ (2007). Better Power Methods for the Univariate Approach to Repeated Measures.
Ph.D. thesis, University of North Carolina at Chapel Hill.

Gurka M, Coffey C, Muller K (2007). “Internal Pilots for a Class of Linear Mixed Models with
Gaussian and Compound Symmetric Data.” Statistics in Medicine, 26(22), 4083–4099.



34 POWERLIB Software for Multivariate Linear Models Power, Version 2.2

Hedeker D, Gibbons R, Waternaux C (1999). “Sample Size Estimation for Longitudinal De-
signs with Attrition: Comparing Time-Related Contrasts Between Groups.” Journal of Ed-
ucational and Behavioral Statistics, 24, 70–93. URL http://tigger.uic.edu/~hedeker/

ml.html.

Heitjan D (2013). Power and Sample Size Functions. URL http://www.cceb.upenn.edu/

pages/heitjan/power/.

Helms RW (1988). “Definitions of Linear-Model Parameters and Hypotheses as Functions of
E[Y].” Communications in Statistics-Theory and Methods, 17(8), 2715–2723.

Kotz S, Balakrishnan N, Johnson N (2000). Continuous Multivariate Distributions, Volume
1: Models and Applications, 2nd edition. Wiley, New York.

Lenth RV (2001). “Some Practical Guidelines for Effective Sample Size Determination.” The
American Statistician, 55, 187–193.

McKeon JJ (1974). “F-Approximations to Distribution of Hotellings-T2/3.” Biometrika,
61(2), 381–383.

Muller KE (1998). “A New F Approximation for the Pillai-Bartlett Trace Under H-0.” Journal
of Computational and Graphical Statistics, 7(1), 131–137.

Muller KE, Barton CN (1989). “Approximate Power for Repeated-Measures ANOVA Lacking
Sphericity.” Journal of the American Statistical Association, 84(406), 549–555.

Muller KE, Benignus VA (1992). “Increasing Scientific Power with Statistical Power.” Neu-
rotoxicology and Teratology, 14(3), 211–219.

Muller KE, Edwards L, Simpson S, Taylor D (2007). “Statistical Tests with Accurate Size
and Power for Balanced Linear Mixed Models.” Statistics in Medicine, 26(19), 3639–3660.

Muller KE, Fetterman B (2002). Regression and ANOVA: an Integrated Approach Using SAS
Software. SAS Institute, Cary, NC.

Muller KE, Lavange LM, Ramey SL, Ramey CT (1992). “Power Calculations for General
Linear Multivariate Models Including Repeated Measures Applications.” Journal of the
American Statistical Association, 87(420), 1209–1226.

Muller KE, Pasour VB (1997). “Bias in Linear Model Power and Sample Size Due to Esti-
mating Variance.” Communications in Statistics-Theory and Methods, 26(7), 1811–1811.

Muller KE, Peterson BL (1984). “Practical Methods for Computing Power in Testing the
Multivariate General Linear Hypothesis.” Computational Statistics and Data Analysis, 2,
143–158.

Muller KE, Stewart PW (2006). Linear Model Theory: Univariate, Multivariate, and Mixed
Models. Wiley, Hoboken, NJ.

NCSS (2013). PASS, Power Analysis and Sample Size. URL http://www.ncss.com/pass.

html.

http://tigger.uic.edu/~hedeker/ml.html
http://tigger.uic.edu/~hedeker/ml.html
http://www.cceb.upenn.edu/pages/heitjan/power/
http://www.cceb.upenn.edu/pages/heitjan/power/
http://www.ncss.com/pass.html
http://www.ncss.com/pass.html


JL Johnson, YY Chi, KE Muller 35

O’Brien R (2003). UnifyPow. URL http://www.bio.ri.ccf.org/power.html.

O’Brien R, Muller K (1993). “A Unified Approach to Statistical Power for T-Tests to Multi-
variate Models.” In L Edwards (ed.), Applied Analysis of Variance in Behavioral Sciences,
pp. 297–344. Marcel Dekker, New York.

O’Brien R, Shieh G (1992). “Pragmatic, Unifying Algorithm Gives Power Probabilities for
Common Tests of the Multivariate General Linear Hypothesis.” Unpublished work.

Park S (2007). Accounting for Bias and Uncertainty in Power for Multivariate Gaussian
Linear Models. Ph.D. thesis, University of North Carolina at Chapel Hill.

Pillai KCS (1954). “On Some Distribution Problems in Multivariate Analysis.” University of
North Carolina, Mimeo Series, 88.

Pillai KCS (1955). “Some New Test Criteria in Multivariate Analysis.”Annals of Mathematical
Statistics, 26(1), 117–121.

Pillai KCS, Samson P (1959). “On Hotellings Generalization of T2.” Biometrika, 46(1-2),
160–168.

Rao C (1951). “An Asymptotic Expansion of the Distribution of Wilks’ Criterion.” Bulletin
of the Institute of International Statistics, 33c, 177–180.

SAS Institute (2013a). The SAS System Version 9.3. Cary, NC. URL http://support.sas.

com/documentation/93/index.html.

SAS Institute (2013b). SAS/IML Software Version 9.3. Cary, NC. URL
http://support.sas.com/documentation/cdl/en/imlug/64248/HTML/default/

viewer.htm#titlepage.htm.

SAS Institute (2013c). SAS/STAT Software Version 9.3. Cary, NC. URL
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/

viewer.htm#titlepage.htm.

Spybrook J, Raudenbush S, Liu X, Congdon R, Martinez A (2011). Optimal Design Soft-
ware for Multi-level and Longitudinal Research (Version 3.01) [Software]. URL http:

//sitemaker.umich.edu/group-based/optimal_design_software.

Statistical Solutions (2013). Nquery Advisor. URL http://www.statsol.ie/.

Taylor DJ, Muller KE (1995). “Computing Confidence-Bounds for Power and Sample-Size of
the General Linear Univariate Model.” The American Statistician, 49(1), 43–47.

Taylor DJ, Muller KE (1996). “Bias in Linear Model Power and Sample Size Calculation Due
to Estimating Noncentrality.” Communications in Statistics-Theory and Methods, 25(7),
1595–1610.

Timm N (2002). Applied Multivariate Analysis. Springer-Verlag, New York, NY.

Verbeke G, Molenbergs G (2000). Linear Mixed Models for Longitudinal Data. Springer, New
York.

http://www.bio.ri.ccf.org/power.html
http://support.sas.com/documentation/93/index.html
http://support.sas.com/documentation/93/index.html
http://support.sas.com/documentation/cdl/en/imlug/64248/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/imlug/64248/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#titlepage.htm
http://sitemaker.umich.edu/group-based/optimal_design_software
http://sitemaker.umich.edu/group-based/optimal_design_software
http://www.statsol.ie/


36 POWERLIB Software for Multivariate Linear Models Power, Version 2.2

Affiliation:

Jacqueline L. Johnson
Medical School Wing B, Room 331
CB#7160
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599
E-mail: jacqueline_johnson@med.unc.edu

Yueh-Yun Chi
2004 Mowry Road, Room 5238
PO Box 117450
Gainesville, FL 32611
E-mail: yychi@ufl.edu

Keith E. Muller
2004 Mowry Road, Room 2246
PO Box 100177
Gainesville, FL 32610-0177
E-mail: KMuller@ufl.edu
URL: http://www.health-outcomes-policy.ufl.edu/muller/
URL: http://www.samplesizeshop.org

mailto:jacqueline_johnson@med.unc.edu
mailto:yychi@ufl.edu
mailto:KMuller@ufl.edu
http://www.health-outcomes-policy.ufl.edu/muller/
http://www.samplesizeshop.org

	Description of POWERLIB
	Available models and hypothesis tests
	Model and hypothesis notation
	Statistical theory
	Why use this software?

	How to use POWERLIB
	Execution
	Inputs overview
	Outputs overview
	Required matrices
	Input checks
	Specifying the design matrix X

	A simple power program – one power value from a two-sample t test
	Producing power for a range of scenarios
	Power computation, printing, and output options
	Overview
	Choosing the hypothesis test statistic
	Additional model specification options
	Specifying columns included in the output matrix
	Options that control printing and warnings
	Output to a dataset

	Computing power with estimated variance
	Confidence Limits for Power
	Computing the power point estimate for estimated variance

	Computing power for internal pilot designs
	Computing power for high dimension, low sample size data
	Choosing power approximations
	Overview
	Choosing UNIREP approximations
	Choosing MULTIREP approximations

	F distribution probability calculations
	Numerical accuracy
	Error checking
	User utilities

	Additional examples
	Power for a t test with overlay plot
	Power for a paired t test
	Power for a t test with three-dimensional plot
	Power for a test of an interaction term in a multivariate model
	Test in a multivariate model with two within factors
	Confidence limits for a univariate model test
	Confidence limits for a UNIREP test in a multivariate model
	Point estimate for power of a UNIREP test based on estimated variance
	Power within the context of an internal pilot design
	Power for high dimension, low sample size data
	Illustrate use of the UPOLY1 module
	Illustrate use of the UPOLY3 module

	Concluding remarks

